Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prenat Diagn ; 43(10): 1296-1309, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37539818

RESUMO

Pathophysiological studies have shown that pulmonary vascular development is impaired in fetuses with a congenital diaphragmatic hernia (CDH), leading to a simplified vascular tree and increased vascular resistance. Multiple studies have described prenatal ultrasound parameters for the assessment of the pulmonary vasculature, but none of these parameters are used in daily clinical practice. We provide a comprehensive review of the literature published between January 1990 and February 2022 describing these parameters, and aim to explain the clinical relevance of these parameters from what is known from pathophysiological studies. Prenatal detection of a smaller diameter of the contralateral (i.e. contralateral to the diaphragmatic defect) first branch of the pulmonary artery (PA), higher pulsatility indices (PI), higher peak early diastolic reverse flow values, and a lower vascularization index seem of added value for the prediction of survival and, to a lesser extent, morbidity. Integration within the routine evaluation is complicated by the lack of uniformity of the methods used. To address the main components of the pathophysiological changes, we recommend future prenatal studies in CDH with a focus on PI values, PA diameters and pulmonary vascular branching.


Assuntos
Hérnias Diafragmáticas Congênitas , Gravidez , Feminino , Humanos , Hérnias Diafragmáticas Congênitas/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Pulmão , Artéria Pulmonar/diagnóstico por imagem , Feto
2.
Lab Invest ; 103(11): 100233, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567389

RESUMO

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital lung disorder that presents shortly after birth with respiratory failure and therapy-resistant pulmonary hypertension. It is associated with heterozygous point mutations and genomic deletions that involve the FOXF1 gene or its upstream regulatory region. Patients are unresponsive to the intensive treatment regimens and suffer unnecessarily because ACDMPV is not always timely recognized and histologic diagnosis is invasive and time consuming. Here, we demonstrate the usefulness of a noninvasive, fast genetic test for FOXF1 variants that we previously developed to rapidly diagnose ACDMPV and reduce the time of hospitalization.


Assuntos
Síndrome da Persistência do Padrão de Circulação Fetal , Alvéolos Pulmonares/anormalidades , Recém-Nascido , Humanos , Síndrome da Persistência do Padrão de Circulação Fetal/diagnóstico , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Relevância Clínica , Alvéolos Pulmonares/patologia , Fatores de Transcrição Forkhead/genética
3.
Front Pediatr ; 10: 881287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615634

RESUMO

Congenital diaphragmatic hernia is a structural birth defect of the diaphragm, with lung hypoplasia and persistent pulmonary hypertension. Aside from vascular defects, the lungs show a disturbed balance of differentiated airway epithelial cells. The Sry related HMG box protein SOX2 is an important transcription factor for proper differentiation of the lung epithelium. The transcriptional activity of SOX2 depends on interaction with other proteins and the identification of SOX2-associating factors may reveal important complexes involved in the disturbed differentiation in CDH. To identify SOX2-associating proteins, we purified SOX2 complexes from embryonic mouse lungs at 18.5 days of gestation. Mass spectrometry analysis of SOX2-associated proteins identified several potential candidates, among which were the Chromodomain Helicase DNA binding protein 4 (CHD4), Cut-Like Homeobox1 (CUX1), and the Forkhead box proteins FOXP2 and FOXP4. We analyzed the expression patterns of FOXP2, FOXP4, CHD4, and CUX1 in lung during development and showed co-localization with SOX2. Co-immunoprecipitations validated the interactions of these four transcription factors with SOX2, and large-scale chromatin immunoprecipitation (ChIP) data indicated that SOX2 and CHD4 bound to unique sites in the genome, but also co-occupied identical regions, suggesting that these complexes could be involved in co-regulation of genes involved in the respiratory system.

4.
Front Pediatr ; 9: 804496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917566

RESUMO

Congenital diaphragmatic hernia (CDH) is a structural birth defect characterized by a diaphragmatic defect, lung hypoplasia and structural vascular defects. In spite of recent developments, the pathogenesis of CDH is still poorly understood. CDH is a complex congenital disorder with multifactorial etiology consisting of genetic, cellular and mechanical factors. This review explores the cellular origin of CDH pathogenesis in the diaphragm and lungs and describes recent developments in basic and translational CDH research.

5.
Elife ; 102021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34286693

RESUMO

SOX2 expression levels are crucial for the balance between maintenance and differentiation of airway progenitor cells during development and regeneration. Here, we describe patterning of the mouse proximal airway epithelium by SOX21, which coincides with high levels of SOX2 during development. Airway progenitor cells in this SOX2+/SOX21+ zone show differentiation to basal cells, specifying cells for the extrapulmonary airways. Loss of SOX21 showed an increased differentiation of SOX2+ progenitor cells to basal and ciliated cells during mouse lung development. We propose a mechanism where SOX21 inhibits differentiation of airway progenitors by antagonizing SOX2-induced expression of specific genes involved in airway differentiation. Additionally, in the adult tracheal epithelium, SOX21 inhibits basal to ciliated cell differentiation. This suppressing function of SOX21 on differentiation contrasts SOX2, which mainly drives differentiation of epithelial cells during development and regeneration after injury. Furthermore, using human fetal lung organoids and adult bronchial epithelial cells, we show that SOX2+/SOX21+ regionalization is conserved. Lastly, we show that the interplay between SOX2 and SOX21 is context and concentration dependent leading to regulation of differentiation of the airway epithelium.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição SOXB2/metabolismo , Animais , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Camundongos , Células-Tronco/metabolismo , Traqueia/metabolismo , Transcriptoma
6.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L317-L331, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268349

RESUMO

The mortality and morbidity of patients with congenital diaphragmatic hernia (CDH) is primarily caused by treatment-resistant, persistent pulmonary hypertension. Structural vascular changes, exemplified by extensive muscularization, are already present early in gestation, but the origin of these abnormalities is unknown. Understanding the origin of the vascular defects is important to improve treatment modalities. Here, we show that the distribution of pericytes is different and may thereby potentially initiate the vascular pathology in CDH. Transient inhibition of retinoic acid (RA) signaling early during pregnancy, the basis of the CDH mouse model, led to an increase in the number of pericytes, thereby affecting the angiogenic potential of pericytes in the fetuses. Pericytes of CDH lungs showed reduced proliferation and an increased ACTA2 expression, which indicates that these pericytes are more contractile than in control lung pericytes. This resulted in increased pericyte coverage of pulmonary vessels and reduced expansion of the capillary bed, the earliest pathological sign of the structural changes in CDH. Furthermore, the pericytes had reduced and altered collagen IV deposition in CDH, pointing to a loss of basal membrane integrity between pericytes and endothelial cells. Inhibition of RA signaling in vitro resulted in reduced migration of pericytes, reduced angiogenesis, and loss of collagen IV expression. Importantly, we confirmed our findings in lungs of human CDH patient samples. In summary, inhibition of RA signaling affects the lung pericyte population, leading to increased contractility, reduced pulmonary angiogenesis, and aberrant lung development, as observed in CDH.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Hérnias Diafragmáticas Congênitas/patologia , Tretinoína/farmacologia , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Hérnias Diafragmáticas Congênitas/tratamento farmacológico , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Pericitos/efeitos dos fármacos , Pericitos/patologia , Transdução de Sinais/efeitos dos fármacos
7.
Pulm Circ ; 8(3): 2045894018795143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30058937

RESUMO

Alveolar capillary dysplasia with misalignment of the pulmonary veins (ACD/MPV) is a rare and lethal disorder mainly involving the vascular development of the lungs. Since its first description, significant achievements in research have led to a better understanding of the underlying molecular mechanism of ACD/MPV and genetic studies have identified associations with genomic alterations in the locus of the transcription factor FOXF1. This in turn has increased the awareness among clinicians resulting in over 200 cases reported so far, including genotyping of patients in most recent reports. Collectively, this promoted a better stratification of the patient group, leading to new perspectives in research on the pathogenesis. Here, we provide an overview of the clinical aspects of ACD/MPV, including guidance for clinicians, and review the ongoing research into the complex molecular mechanism causing this severe lung disorder.

8.
Transgenic Res ; 27(1): 75-85, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29383478

RESUMO

Sox2 is a Sry-box containing family member of related transcription factors sharing homology in their DNA binding domain. Sox2 is important during different stages of development, and previously we showed that Sox2 plays an important role in branching morphogenesis and epithelial cell differentiation in lung development. The transcriptional activity of Sox2 depends on its interaction with other proteins, leading to 'complex-specific' DNA binding and transcriptional regulation. In this study, we generated a mouse model containing a biotinylatable-tag targeted at the translational start site of the endogenous Sox2 gene (bioSox2). This tag was biotinylated by the bacterial birA protein and the resulting bioSox2 protein was used to identify associating partners of Sox2 at different phases of lung development in vivo (the Sox2 interactome). Homozygous bioSox2 mice are viable and fertile irrespective of the biotinylation of the bio tag, indicating that the bioSox2 gene is normally expressed and the protein is functional in all tissues. This suggests that partners of Sox2 are most likely able to associate with the bioSox2 protein. BioSox2 complexes were isolated with high affinity using streptavidin beads and analysed by MALDI-ToF mass spectrometry analysis. Several of the identified binding partners are already shown to have a respiratory phenotype. Two of these partners, Wdr5 and Tcf3, were validated to confirm their association in Sox2 complexes. This bioSox2 mouse model will be a valuable tool for isolating in vivo Sox2 complexes from different tissues.


Assuntos
Pulmão/embriologia , Camundongos Transgênicos , Fatores de Transcrição SOXB1/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biotinilação , Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Complexos Multiproteicos , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...